Second-order Nonlinearities of CdS Nanoparticles Studied by Hyper-Rayleigh Scattering Technique

Yu ZHANG, Xin WANG, De Gang FU*, Ju Zheng LIU, Zu Hong LU

National Laboratory of Molecular and Biomolecular Electronics, Department of Chemistry and Chemical Engineering, Southeast University, Nanjing 210096

Abstract: A series of CdS nanoparticles with different surfaces were prepared by colloidal chemical method and reverse micelle method. Their second-order nonlinear optical (NLO) properties were experimentally studied in solution by newly developed hyper-Rayleigh scattering (HRS) technique. The results show that "per particle" first-order hyperpolarizability β values are sensitive to the synthetic method and the surface chemical modification.

Keywords: Second-order nonlinear optical properties, hyper-Rayleigh scattering (HRS), first-order hyperpolarizability, CdS nanopartices, surface-modification.

Optical nonlinearities of semiconductor nanoparticles are of great interest recently. So far their third-order nonlinear optical (NLO) properties have been widely studied. However, there are only few studies on second-order NLO properties, because it is believed that the centrosymmetry or near-centrosymmetry of spherical nanoparticles eliminate their first-order hyperpolarizability β values to zero or near zero. And for a long time it remains a problem to directly study the second-order NLO properties of such nanoscale particles by conventional NLO technique such as interfacial second harmonic generation (SHG) and electric-field-induced SHG techniques which are constrained by the orientational, size, and/or charge restrictions¹. Fortunately, the newly developed hyper-Rayleigh scattering (HRS) technique overcomes the above restrictions, hence second-order NLO properties of nanoparticles can be studied. Recently, a few studies were reported about HRS for the colloidal gold and insulator nanoparticle SiO₂^{1,2}. Here the HRS technique is used to measure second-order NLO response of a series of semiconductor nanoparticles with different surfaces prepared by different methods.

The Cd^{2+} -rich CdS, S^{2-} -rich CdS, thiourea-stabilized Cd^{2+} -rich CdS and heteropolyanion-stabilized Cd^{2+} -rich CdS hydrosols are named as CdS/Cd^{2+} , CdS/S^{2-} , $CdS/SC(NH_2)_2$ and $CdS/PW_{12}O_{40}^{3-}$, prepared by rapidly mixing $Cd(NO_3)_2$ and Na_2S aqueous solutions under stirring. Using reverse micelle method³, the surface-modified CdS nanoparticles with Cd^{2+} -rich surface by AOT (bis (2-ethylhexyl) sulfosuccinate, disodium salt) or pyridine (Py) were synthesized (named as CdS/AOT and CdS/Py, respectively). The absorption spectra and TEM images show that the above CdS nanoparticles are about 5 nm in diameter with narrow size distribution and have Yu ZHANG et al.

negligible absorption at the frequency-doubling light of 532 nm.

The HRS experiments use a similar setup to the literature⁴. The Q-switched Nd-YAG laser pulse (10 Hz and 8-10 ns pulse width) at 1064 nm is focused into a 5 cm length glass cell in which a liquid sample is measured. The β values of nanoparticles are determined in terms of the internal reference method (IRM)¹. The calculation shows that the β values of the CdS/Cd²⁺, CdS/S²⁻, CdS/SC(NH₂)₂, CdS/PW₁₂O₄₀³⁻ in water and CdS/AOT in heptane, CdS/Py in pyridine are 1.30×10^{-26} , 1.41×10^{-26} , 4.38×10^{-26} , 2.51×10^{-26} and 1.50×10^{-27} , 1.05×10^{-27} esu, respectively, which are among the largest values reported for solution species. It is found that the β values differ by one order of magnitude for the CdS nanoparticles prepared with the different methods. And the CdS nanoparticles with different surfaces also have different β values. As proved by Clays *et al.*⁵, surface termination of the crystalline lattice creates a condition of noncentrosymmetry which contributes to the large β values for nanoparticles with huge surface-to-volume ratio. It is apparent that synthetic methods and surface-modifications have strong influence on the surface structure of CdS nanoparticles. Therefore, β values of CdS nanoparticles can be controlled. This is significant for further detailed investigation of HRS mechanism of nanoparticles.

Acknowledgments

This work is supported by The National Natural Science Foundation of China (No.59582005).

References

- 1. F. W. Vance, B. I. Lemon, J. A. Ekhoff, J. T. Hupp, J. Phys. Chem. B, 1998, 102, 1485.
- 2. F. W. Vance, B. I. Lemon, J. T. Hupp, J. Phys. Chem. B, 1998, 102, 10091.
- 3. H. Deng, M. Li, Y. Zhang, Z. Lu, D. Fu, Chem. Lett., 1997, 6, 483.
- 4. K. Clays and A. Persoons, *Phys. Rev. Lett.*, **1991**, *66*, 2980.
- 5. K. Clays, E. Hendrickx, M. Triest, A. Persoons, J. Mol. Liq., 1995, 67, 133.

Received 15 November 1999 Revised 26 January 2000